Pen Computing Using Microsoft’s Tablet PC

Dr Beryl Plimmer

beryl@cs.auckland.ac.nz
	This tutorial demonstrates the basic programming techniques using the ink classes proved in the Microsoft Tablet SDK. We will build a small program that allows users to draw and write.

	[image: image1.png]relER | LEoLmE|2e b |G

	1. Preparation

You must have Visual Studio .Net and the tablet SDK installed on your machine. The tablet SDK is available from Microsoft’s MSDN site. This tutorial has been developed using Visual Studio 2005 and tablet SDK v 1.5.

	2. Creating a Project

To create your project first start Visual Studio

On the startup page click create project

[image: image2.png]al Studio

Microsoft-

Visual Studio 2005

Recent Projects Visual Studio Developer News

‘The current news channel might not be valid or your Internet connection might be unavailable. To change the news channel, on the
Tools menu click Options, then expand Environment and cick Startup.

In the project properties window select visual C# windows projects (we are going to write in C#, but you can use any of the other .net languages) and give your project a name and directory
[image: image3.png]Templates:

Starterkits
Visual C++

‘Other Project Types

Visual Studio installed templates

(Fvindows Appicaton
(Vindows Control Lbrary
B consoe Appicaton

[Empty Project

My Templates

(search Onine Tenpiates...

{HosssLbrary
Gt Control Lrary

A project for Greating an applcation with 2 Windows user interface.

Name:

MyInProject

Location:

Solution Name:

Ea)
MyInProject

IV Create drectory for solution

	3. Adding references to the ink class

If the solution explorer window isn’t visible, open it from the view menu. In the project solution explorer expand the ‘references’ and right click and select ‘add reference’. This will then appear in the list of references as Microsoft Tablet PC API

	[image: image4.png]ual Studio

[image: image5.png]2T com | proects | sromse | Recent |

S — i S
g 3550 vios
ot ke So3mo 2os0
Mot smOcintan . 05000 12050757
=

e e
Moot Amarssseeesn. S03520 1205077
Moot Ardhasteees i 302520 1205077
Moontodcometon 2000 V205077
Moontodite 2000 v2osm
Moonfodirmenok 2000 V20507
et i
Moonfoddvites 2000 v2osm
Moo asd e 2000 va0m07
Microsoft. CompactFramewor... 8.0.0.0 v2.0.50727 C:\WINDOWS Wicr
MoomfiousComnetonsi 5000 V201018
.

==

	4. Creating the interface
Your project will have form1 listed in the explore window, rename it myInkForm. Although this is interface is quite simple please name controls appropriately as it makes writing the code so much less stressful. A list of the control names and types is shown below. Select the appropriate control from the tool box on the left, place it on the form and set the name in the properties window.

[image: image6.png]NET [design]

Ble Edt Vew Projct Buld Debug Data Fomat Took Window Help

A-a-s0a &a » Debug o - BEERT-,

Todbox 2 x| Strtpage frminkapp.vb [Design] | frminkapp. b
Data o

Comparents Ink Application
indows Forms

X Ponter
A Label
A Unkiabel
8l Button

i TextBox

Wantienu
ChectBox

Radoguton

[GroupBox

a picturesox

[] panel

57 patacrid

8 ustpox

CheckedLstpox

8 Conbosox d
stvien

@

Tresview
5 TabControl

T oateTmepicer
7] Monthcaendar
01 Hscrolgar

2 scrolgar

B Timer

b sptter
DamainLkDoun

NumericUpDoun

ek | LHLELHE|EL 0]G

(&}
=}
=

Trackgar

ProgressBar

!

RichTextBox

S Imagelst
i HelpProvider

&, ToaTp d
18] Contexttienu

14 Toolsar

= statusbar

e Notiylcon

Clpboerd ing -

Genera
B e R Tookox [| B pButtonDescr
Ready

mpLting

arx

Sohkon Explrer Ik fpp 8 X
ElaE=)

153 Soion Tnk_fpp (1 project)

S G 1ok _app
+ @ References
5 bn
ER

) Assembyifo.sb
frminkappvb

ot [T s B i |

Properties 2 x
frmInkApp_System, Windows.Form: + |
2| 4=
= B
AccessbleDescri
Accessblehime
AccessbleRcle Defaul
8
Backcolr [Contral
Backgroundimag[_] (none)
Cusor Defat

Font Miroscft Sans S
Forecoor [l Cotrofext
FormBordersyle Seable
RihtToleft o

Text Ink Application
a
Alowdrop False
Contextieny (none)
Enabled Tue
Text

The text contained in the cortrol,

controls buttons on the left hand side are buttons
btnDraw

btnThin

btnMedium

btnThick

btnErase

btnSelect

btnBlack

btnGreen

btnYellow

btnDodgerBlue

btnWhite

btnWrite

btnClear

btnRecog

The picture icons were created by Beirong Wong. You add these to the button by selecting the image property for the button and browsing to pick up the image from …… The colours are set by setting the back color of the button. You will also have to delete the button text property. You may have noticed that the line thickness and colour buttons are grouped; this effect is achieved by putting the buttons in a panel. In this program the panels are purely decorative.

The main controls are picture boxes –you will need to change their backcolour properties to white
picDrawingArea

picWritingArea

finally there is a line between the two picture boxes and a label at the bottom of the form for the recognized text to be displayed

lblDisplayText
-change autosize property to false if you want to set the size of it yourself
A nice touch is to add a tooltip control to the form tray so that you can add appropriate tool tips to each control.

	5. Starting the code

Move to the code window by clicking on the code icon at the top of the solution explore window. Add a reference to the ink namespace by adding
using Microsoft.Ink

before the form class declaration

[image: image7.png][ermomrom]

Elusing System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing:

using System.Text;

using System.Windows.Forms;
using Microsoft.Ink;

) nanespace MyInkProject
B
public parcial class Forml : Form
B
public Formi()
B
InitializeComponent () ;

5 private void buttonl Click(cbject sender, Eventhrgs e)
B

[ESolution Explorer [Class View

We also need a number of class variables to hold the various ink related objects. Add these immediately below the form designer code

 InkOverlay myDrawingInk ; //'object to hold drawing ink

 InkCollector myWritingInk ; // 'object to hold writing ink

 Recognizers myRecognizers ; // 'collection of different available recognizers
The object myWritingInk uses the inkCollector class; this class has basic ink collection functionality. myDrawingInk is using the InkOverlay Class. This class, as well as all the functionality of the inkCollector class, also has methods for selecting and erasing ink and resizing is an intrinsic part of the ink.

The recognizer collection is used to access the tablet recognizers.

	6. Initialisation on form load
In the form load event we will add the code to initialize the ink collectors. If you are new to .net – do not copy the method signature. Go to the designer window and double click on the form background. The IDE will create the load event signature for you.
The three myDrawingInk lines initialize the inkoverlay object, enable it and then set the width in ink space units (much smaller than a pixel). The myWritingInk lines do similar tasks for the writing panel, but the width is left as the default of 53.

 private void MyInkProject_Load(object sender, EventArgs e)

 {

 myDrawingInk = new InkOverlay(picDrawingArea.Handle);

 myDrawingInk.Enabled = true;

 myDrawingInk.DefaultDrawingAttributes.Width = 85; //thin ink

 myWritingInk = new InkCollector(picWritingArea.Handle);

 myWritingInk.Enabled = true;

 myRecognizers = new Recognizers();

 }
Try to run your program. You should now be able to ink in both of the picture boxes.

	7. What is happening?
Each pen/mouse down, move, up creates an ink stroke. This stroke is added to the strokes collection of the ink collector that is associated with the picture box. If you are curious you could add another button to the form and display the number of strokes in each collection in the label at the bottom with a line like this
 lblDisplayText.Text = "drawing strokes = " +

 myDrawingInk.Ink.Strokes.Count +
 " writing strokes = " + myWritingInk.Ink.Strokes.Count;

	8. Setting the different modes for the drawing space
The ink overlay class has three different editing modes; ink, erase and select.

We have already created corresponding buttons for each of these modes. On the form design double-click on the ink button and the IDE will create a button-click event you then need to add the line of code below to the event

 private void btnDraw_Click(object sender, EventArgs e)

 {

 myDrawingInk.EditingMode = InkOverlayEditingMode.Ink;

}
Add appropriate code to the erase and select button clicks. The eraser has two erase modes, whole stoke (the default) or point, you may like to try them out.
Check your program runs, you should now be able to draw, erase, select and resize in the drawing picture box.

	9. Line widths
Control widths are very similar

Create a button click event for each width button and set the width with a line similar to that below. The widths we used are 85, 175 and 300

 myDrawingInk.DefaultDrawingAttributes.Width = 85;

	10. Colours

Create button click event for one colour (say black)

 private void btnBlack_Click(object sender, EventArgs e)

 {

 myDrawingInk.DefaultDrawingAttributes.Color = Color.Black;

 }
Try your program. The white ink isn’t too sensible – you may like to add a colour dialogue to the form and from a right click on that button let the user set the colour.

	11. Writing Space

The btnWrite doesn’t actually need any code because we enabled the ink object for the writing picture box on form load with the basic ‘inkcollector’ this doesn’t have the ink, delete, select modes of ink overlay so we can change modes.

	12. Clear writing space

The clear needs to delete the ink strokes, clear the picture and clear the recognition text box

 private void btnClear_Click(object sender, EventArgs e)

 {

 myWritingInk.Ink.DeleteStrokes(myWritingInk.Ink.Strokes);

 lblDisplayText.Text = "";

 picWritingArea.Refresh()

 }

	13. Recognition
This is the only part of the program that actually needs the tablet OS. First you need to check that there is a recognizer installed and then it is very simple to do basic recognition

Note that the Strokes' ToString() method is a shortcut for retrieving the best match using the default recognizer. The same result can also be obtained using the RecognizerContext. You can set your program up so that only selected strokes are recognized or it hands back words sentences or paragraphs.

For example, try the following lines of code:

 RecognizerContext myRecoContext = new RecognizerContext();

 Microsoft.Ink.RecognitionResult recoResult;
 Microsoft.Ink.RecognitionStatus recoStatus;

 myRecoContext.Strokes = myWritingInk.Ink.Strokes;

 recoResult = myRecoContext.Recognize(out recoStatus);
 lblDisplayText.Text = recoResult.TopString;

	14. Saving and loading ink

There a number of different formats you use to can save and load ink. We are going to save into an xml file as utf8 (Unicode – 8) format. There is an example app with the sdk that show you how to use other formats. You can save as html, but this can not be reloaded as ink.

First add name space references at the top of your code

 using System.IO; //file handling

 using System.Xml; //xml documents – reading and writing

 using System.Text; //helper for utf8

	15. Saving

Add a main menu to your form and then menu items for open and save

Add a save dialogue to the component tray of your form

The saving is a bit complex, so here is all the code and then the explanation

1. saveFileDialog1.Filter = "Ink Serialized Format files (*.isf)|*.isf";

2. if (saveFileDialog1.ShowDialog() == DialogResult.OK)

3. {

4. FileStream myStream = new FileStream(saveFileDialog1.FileName,

5. FileMode.Create, FileAccess.ReadWrite);

6. XmlTextWriter xmlWriter = new XmlTextWriter(myStream, Encoding.UTF8);

7. xmlWriter.WriteStartDocument();

8. xmlWriter.WriteStartElement("SerialisationOfInk");

9. UTF8Encoding utf8 = new UTF8Encoding();
10. Byte[] base64ISFBytes;

11. String base64ISFString;

12. base64ISFBytes =

13. myDrawingInk.Ink.Save(PersistenceFormat.Base64InkSerializedFormat);

14. int count;

15. for(count = base64ISFBytes.Length - 1; count <= 0; count=-1){

16. if(base64ISFBytes[count] != 0)

17. break;

18. }

19. count += 1;

20. base64ISFString = utf8.GetString(base64ISFBytes, 0, count);

21. xmlWriter.WriteElementString("DrawingInk", base64ISFString);

22. xmlWriter.WriteEndElement();

23. xmlWriter.WriteEndDocument();

24. xmlWriter.Close();

25. myStream.Close();

26. }
You need to look at this as a series of nested operations the (..) refer to code line numbers
a. the windows file open and close
this is represented by the savedialogue (lines 1 & 2) , file open (4,5) and file close (25)
b. declare and start xml document writer (6) and stop xml writer (24)

c. start(7) and stop xml document element (23) – note that the element name can not include space

d. organize the ink - this is complicated because the ink.save returns a null terminating byte that can not be written to the xml file – most of this code is about removing the null declarations

utf8 object – the class that will convert ink to Unicode (9)

a byte array to put the converted ink in (10)

a string to put the convert ink without the terminating null (11)

save the ink into the byte array (12,13)
take the null off the end a reverse for loop looking for the first non-null character. This characters location (count +1) is the end of the data (13-19)

convert the ink to uft8 (20)
e. write the ink element string (21) and end the ink element string(22)

	1. Loading

Loading is the reverse process, but much more simple

1. openFileDialog1.Filter = "Ink Serialized Format files (*.isf)|*.isf";

2. if (openFileDialog1.ShowDialog() == DialogResult.OK){

3. FileStream myStream = new FileStream(openFileDialog1.FileName,

4. FileMode.Open, FileAccess.Read);

5. UTF8Encoding utf8 = new UTF8Encoding();

6. XmlDocument xmldoc = new XmlDocument();

7. XmlNodeList xmlNodes;

8. Ink inkLoaded = new Ink();

9. xmldoc.Load(myStream);

10. xmlNodes = xmldoc.GetElementsByTagName("DrawingInk");

11. if (xmlNodes.Count != 0)

12. inkLoaded.Load(utf8.GetBytes(xmlNodes[0].InnerXml));

13. myDrawingInk.Enabled = false;

14. myDrawingInk.Ink = inkLoaded;

15. picDrawingArea.Refresh();

16. myDrawingInk.Enabled = true;

17. myStream.Close();

18. }
a. open (1-4) and close the file (18)
b. declare the utf8 object (5)

c. declare an xml document and nodeslist(6,7)

d. declare somewhere to temporarily hold the ink (8)

e. read the file (9)
f. get the node number of the ink (10)

g. if there is ink convert and load it into the tempory store using the utf8 object (11,12)

h. to put the ink in the drawing space

disable the ink collector (14)

put the load ink into the collector (15) – note this replaces the existing ink

refresh the picture (16) – otherwise the new ink doesn’t show

enable the ink collector (17)

	

Additional Resources
Tablet SDK examples – there is quite an extensive set of examples that come with the tablet SDK. Download from Micrsoft MSDN

Jarrett, R. and P. Su (2003). Building Tablet PC Applications. Redmond,
Microsoft Press.
For those of you who will have to perform a little more recognition on the ink see http://msdn.microsoft.com/msdnmag/issues/06/05/AnalyzeThis/

Research Challenges
· Interaction design – working with a pen is not the same as working with a keyboard/mouse. We are trying to provide a more natural interaction experience where the computer does not demand 100% of the users attention and the user can work with informal documents in a constructive way

· Recognition – converting an informal document to a formal document requires smart recognition, particularly when working with diagrams. Different classes of diagrams have different rules.
· Beautification – when and how can/should ink be converted to a formal representation.

· New applications
· Annotation

· digital libraries (private or shared annotations)

· comment/markup assignments, papers etc

· Animation

· Cartoons
· Diaries

· …….

